Systemic Inflammation in Preclinical Ulcerative Colitis
Daniel Bergemalm et al.
BACKGROUND & AIMS: Preclinical ulcerative colitis is poorly defined. We aimed to characterize the preclinical systemic inflammation in ulcerative colitis, using a comprehensive set of proteins. METHODS: We obtained plasma samples biobanked from individuals who developed ulcerative colitis later in life (n ¼ 72) and matched healthy controls (n ¼ 140) within a population-based screening cohort. We measured 92 proteins related to inflammation using a proximity extension assay. The biologic relevance of these findings was validated in an inception cohort of patients with ulcerative colitis (n ¼ 101) and healthy controls (n ¼ 50). To examine the influence of genetic and environmental factors on these markers, a cohort of healthy twin siblings of patients with ulcerative colitis (n ¼ 41) and matched healthy controls (n ¼ 37) were explored. RESULTS: Six proteins (MMP10, CXCL9, CCL11, SLAMF1, CXCL11 and MCP-1) were up-regulated (P < .05) in preclinical ulcerative colitis compared with controls based on both univariate and multivariable models. Ingenuity Pathway Analyses identified several potential key regulators, including interleukin-1b, tumor necrosis factor, interferon-gamma, oncostatin M, nuclear factor-kB, interleukin-6, and interleukin-4. For validation, we built a multivariable model to predict disease in the inception cohort. The model discriminated treatment-naïve patients with ulcerative colitis from controls with leave-one-out cross-validation (area under the curve ¼ 0.92). Consistently, MMP10, CXCL9, CXCL11, and MCP1, but not CCL11 and SLAMF1, were significantly up-regulated among the healthy twin siblings, even though their relative abundances seemed higher in incident ulcerative colitis. CONCLUSIONS: A set of inflammatory proteins are up-regulated several years before a diagnosis of ulcerative colitis. These proteins were highly predictive of an ulcerative colitis diagnosis, and some seemed to be up-regulated already at exposure to genetic and environmental risk factors.